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1 Purpose

To give a relation between structure of a network and eigenvalues

of the Laplacian of the network. The eigenvalues relate to the

spectrum of a Hamiltonian in a Tight-binding Model.

G = (V, E): a network (V : the node set, E: the bond set)

2 Laplacian of Network

The Laplacian of the network gives the kinetic energy of a particle

hopping between the nodes. The Laplacian is a n × n matrix (n

is the number of nodes), which is a discrete analog of the second

derivative of functions on V .

Let λk(G) be the k-th smallest eigenvalue (k = 1, 2, . . . n) of the

Laplacian, which represents k-th energy level. The eigenfunction

with respect to λk(G) represents the eigenstate of the k-th energy

level.

3 Connectivity of Network

The k-way expansion constant hk(G) is a strength of connectivity

of G with respect to partitions into k subnetworks.

hk(G) := min

(

max
i=1,2,...,k

|∂V i|
|V i| : V =

k
G

i=1

V i, V i 6= ∅

)

,

where ∂F is the set of the bonds connecting F and V − F .
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G1 = (V 1, E1)

G2 = (V 2, E2)

G3 = (V 3, E3)

4 Examples

Example 1. The number of the connected component of G is k

if and only if λk(G) = 0 and λk+1(G) > 0

if and only if hk(G) = 0 and hk+1(G) > 0.

Example 2 (Complete graph).

λk(Kkn) = kn and hk(Kkn) = (k − 1)n for n, k ≥ 2.

Connectivity of complete graphs are very strong.
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Example 3. Let Gn,m := (VKn ∪ VKm , EKn ∪ EKm ∪ {vw}) for

n, m ∈ N, where v ∈ VKn and w ∈ VKm . Then h2(Gn,m) =

1/ min{n, m}. For n ∈ N, h3(G2n,2n) = n À h2(G2n,2n) = 1/2n.

G4,4

5 Relation between λk and hk

The eigenfunction with respect to λ1(G) is constant. The other

eigenfunctions have positive and negative values (and zero). Hence

such eigenfunctions gives a partition into positive value node set

and non-positive value node set.

uu uu uu uu uu uu → uu uu uu uu uu uu
Using such partitions, we can give a k-partition from eigenfunc-

tions of λ2(G), . . . , λk(G) which is similar to the k-partition with

respect to hk(G).

Theorem 4 (Lee-Gharan-Trevisan [1]). There is a constant C > 0

such that

λk(G)

2 deg(G)
≤ hk(G) ≤ Ck2 deg(G)

p

λk(G)

for every connected networks G and every k = 2, . . . , n, where

deg(G) is the maximum number of nodes around one node.

6 Spectral Gap and Partition of Network

In [2], for G with hk(G) ¿ hk+1(G) we gave a k-partition reflecting

a geometry of G. In [3], they give better k-partition under an

weaker condition.

Theorem 5 (Gharan-Trevisan [3]). If hk+1(G) > (1+ε)hk(G) for

some 0 < ε < 1, then there exists a k-partition {Gi = (V i, Ei)}k
i=1

of G satisfying

εhk+1(G)

14k
≤ h2(G

i),
|∂V i|
|V i| ≤ khk(G)

for all i = 1, 2, . . . , k.

The left inequality means the strength of connectivity of each

subnetworks is estimated by using the spectral gap between hk(G)

and hk+1(G), because the spectral gap is less than εhk+1(G) when ε

is appropriate. The right inequality means the degree in separation

of Gi form other subnetworks is estimated by using hk(G).

Using Theorem 4, we can translate this theorem into inequalities

between eigenvalues.

7 Future Work

The above theorems are meaningful only for small k. But in some

situations we need a relation between a geometry of network and

spectral gap near k = n/2. We research this now.
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