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1 Purpose

To give a relation between structure of a network and eigenvalues
of the Laplacian of the network. The eigenvalues relate to the
spectrum of a Hamiltonian in a Tight-binding Model.

G = (V, E): a network (V: the node set, E: the bond set)

2 Laplacian of Network

The Laplacian of the network gives the kinetic energy of a particle
hopping between the nodes. The Laplacian is a n X n matrix (n
is the number of nodes), which is a discrete analog of the second
derivative of functions on V.

Let A\x(G) be the k-th smallest eigenvalue (k = 1,2,...n) of the
Laplacian, which represents k-th energy level. The eigenfunction
with respect to A\x(G) represents the eigenstate of the k-th energy
level.

3 Connectivity of Network

The k-way expansion constant hi(G) is a strength of connectivity
of G with respect to partitions into k£ subnetworks.
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where OF is the set of the bonds connecting F' and V — F.
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4 Examples

Example 1. The number of the connected component of G is k
if and only if Ax(G) =0 and A\x11(G) >0
if and only if hy(G) = 0 and hs1(G) > 0.

Example 2 (Complete graph).

Ae(K*™) = kn and hy,(K*™) = (k — 1)n for n,k > 2.
Connectivity of complete graphs are very strong.
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Example 3. Let Gn,m := (Vkn U Vgm, Egn U Egm U {vw}) for
n,m € N, where v € Vgrn and w € Vgm. Then hao(Gnm) =
1/ min{n, m} For n € N, h3(02n72n) =n> h2(G2n’2n) = 1/2n.
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5 Relation between )\, and hy

The eigenfunction with respect to A1(G) is constant. The other
eigenfunctions have positive and negative values (and zero). Hence
such eigenfunctions gives a partition into positive value node set
and non-positive value node set.
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Using such partitions, we can give a k-partition from eigenfunc-

tions of X\2(G),. .., Ax(G) which is similar to the k-partition with
respect to hy(G).

Theorem 4 (Lee-Gharan-Trevisan [1]). There is a constant C > 0

such that
A (@)

m < hi(G) < CK? deg(G)m

for every connected networks G and every k = 2,...,n, where

deg(G) is the mazimum number of nodes around one node.

6 Spectral Gap and Partition of Network

In [2], for G with hi(G) < hi+1(G) we gave a k-partition reflecting
a geometry of G. In [3], they give better k-partition under an
weaker condition.

Theorem 5 (Gharan-Trevisan [3]). If hx11(G) > (14+€)hi(G) for
some 0 < € < 1, then there exists a k-partition {G* = (V*, E")}}_,
of G satisfying

ehi11(G) i
12k = (@),
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Vi

< khi(G)

foralli=1,2,... k.

The left inequality means the strength of connectivity of each
subnetworks is estimated by using the spectral gap between hy(G)
and hy41(G), because the spectral gap is less than ehy1(G) when €
is appropriate. The right inequality means the degree in separation
of G; form other subnetworks is estimated by using hi(G).

Using Theorem 4, we can translate this theorem into inequalities
between eigenvalues.

7 Future Work

The above theorems are meaningful only for small k. But in some
situations we need a relation between a geometry of network and
spectral gap near k = n/2. We research this now.
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